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Abstract 

The option pricing model performance crucially depends on the ability to estimate all necessary input 

parameters successfully. Within the standard models of Black-Scholes type, the most important 

parameter is volatility. Since it is often very difficult to obtain a single number, an alternative can be 

to apply interval approach or more generalized fuzzy-random approach. In this paper recent 

knowledge of fuzzy numbers and their approximations is utilized in order to suggest fuzzy-random 

simulation approach to option price modeling, ie. we use fuzzy-random variables. In particular, we 

suggest to replace a crisp volatility parameter in the standard market model (ie. Black-Scholes type) 

by a fuzzy random variable, which can be easily evaluated by Monte Carlo simulation. Application 

possibilities are shown on illustrative examples. In particular, we evaluate the model for various input 

data and option types. The results are compared to the Black-Scholes option price and market option 

prices. 

 

Keywords: fuzzy random variable, plain vanilla option, Monte Carlo simulation 

JEL codes: C49, C58 

 

1. Introduction 

 

A standard approach to option pricing is based on Black-Scholes type (BS hereafter) models 

(Black and Scholes, 1973) utilizing the no-arbitrage argument of complete markets. However, there 

are three crucial assumptions – the option underlying log-returns follow normal distribution, there is 

unique and deterministic riskless rate as well as the volatility of underlying log-returns – that must be 

fulfilled, otherwise the BS models might provide false results.  

Especially the suggestion of the normality assumption is quite surprising, since the non-

normality of asset price returns used to be a well-known fact at least starting with the empirical studies 

of Mandelbrot (1963a,b) and Fama (1965). It is therefore natural, that there have arisen many 

alternative models taking into account also the real (or risk neutral) features of market returns, namely 
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skewness and kurtosis, by adding more parameters to the original model – a very comprehensive 

review provide eg. Jondeau et al. (2006) or Cont and Tankov (2010). 

Moreover, while riskless rate assumption can be acceptable at well predictable markets with 

high liquidity (ie. we can use forward rates related to the option maturity), the volatility of returns is a 

quantity, which is neither directly observable nor tradable. Usually, the only way how to get the 

instantaneous volatility is to invert option pricing model (a so called implied volatility). 

It therefore follows that the BS price at one time moment can be related to a whole set of 

implied volatilities as given by various maturity and moneyness of tradable options and results into 

implied volatility curve or surface (a so called smirk or smile), see eg. Rebonato (2004). 

One way, how to cope with a volatility parameter is to suppose its stochastic nature, which can 

lead, under some additional assumptions (especially the normality of log-returns) even to a closed-

form formula to option pricing (see eg. Heston (1993) and Heston and Nandi (2000)). Alternatively, 

instead of specifying a probability distribution of the volatility parameter, we can adopt an interval 

approach based on extremal observations of volatility in the past or a so called worst-case volatility 

scenario approach (see Buff (2002) for more details). The drawback of the interval approach is that 

we have only the boundaries.  

Our aim in this paper is to formulate a fuzz-random process for the volatility parameter and 

evaluate selected options via Monte Carlo simulation. We show that it is very intuitive to extend the 

interval approach by describing the boundaries via fuzzy random numbers. Although several authors 

have already provided ‘analytical’ formulas (see eg. Yoshida, 2003) and others preferred lattice 

approximations (see eg. Zmeškal, 2001), due to our knowledge a simulation approach has not been 

utilized yet. In this context we recall, that Monte Carlo simulation is a very useful approach eg. in case 

of complex underlying processes and/or payoff functions (see eg. Boyle et al., 1997) 

We proceed as follows. In the following section we briefly describe the standard approach to 

option pricing via Monte Carlo simulation in line with Tichý (2010). Then, we suggest several ways 

how to deal with the option pricing problem under various assumptions about the volatility. Next, we 

provide the definition of fuzzy random variables – we follow the approach adopted recently by 

Holčapek and Tichý (2011) – and also formulate a fuzzy-random process. Finally, we provide an 

empirical study assuming an option on German stock index (DAX). 

 

2. Standard approach 

 

Let us denote the underlying asset price at maturity time as TS  and the exercise price as K . 

Then we can denote the payoff function   for European call ( 1=p ) and put ( 1= p ) options as 

  KSp T  with ,0)(max)( xx 
. For the option value at time Tt <  it generally holds that:  

    ],[=][= / 
 KSpeef T

dputcallvanilla

T

d

t EE   (1) 

where a discount factor d  relates to the probability measure under which the expectation operator E 

is evaluated and tT =  denotes the remaining time to maturity. Commonly, E denotes the real 

world expectation (under physical probability measure), while E is used within the risk-neutral world, 

ie. tT

r SSe =][E
, where r  is a riskless rate valid over time interval  . 

Since financial asset prices are often restricted to positive values only, geometric processes are 

commonly preferred. If, for example, )(tZ  denotes a stochastic process for log-returns of financial 

asset S , eg. a non-dividend paying stock, in order to model its price in time we have to evaluate the 

exponential function of )(tZ . It follows that under  formula (1) can be rewritten into (assuming 

1=p ):  

 ,= 




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
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



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t

r

t


 E  (2) 

where 


Z  is a (potentially compensated) realization of a suitable stochastic process over   such that 

it is ensured that ][


 Z

teSE  is a martingale. 
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The optimal choice of 


Z  depends on the assumptions (observations) about the returns of the 

underlying asset. If the process is sufficiently tractable, (2) can be solved analytically leading to a 

closed form formula, see eg. risk-neutral derivation of the Black-Scholes model in any textbooks on 

quantitative finance. Alternatively, we can utilize the law of large numbers and evaluate the 

expectation in (2) via Monte Carlo simulation, ie. sufficiently large number N  of independent 

scenarios is taken from the relevant probability distribution of 
Q

Z  (see eg. Glasserman (2004) for 

more details): 
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where superscript )(i  refers to i -th scenario from a given probability space.  

Within the BS model, 


Z  is the zero-drift diffusion process based on standard normal variates 

: 

 



2

2

Z . (4) 

Here,  is used to scale the variance (and volatility) of underlying returns and the last term ensures that 

the exponential of (4) is martingale (we will use only  from now).  

Since it is often difficult to select a one number to be put into (4), it can be replaced by a 

stochastic process – however, suitable candidates should respect the empirical features of variance 

(volatility) process, ie. positive values and mean-reverting tendency. Obviously, if the information 

available about the source of uncertainty are not sufficient to select a reliable candidate for its 

stochastic evolution, one can prefer to replace 


Z  by a fuzzy-stochastic variable. We will suggest 

several alternative models in the following section. 

 

3. Option pricing models and assumptions about the volatility 

 

Since it is often difficult to select a one number to be put into (4), it can be replaced by a 

stochastic process – however, suitable candidates should respect the empirical features of variance 

(volatility) process, ie. positive values and mean-reverting tendency. Obviously, if the information 

available about the source of uncertainty are not sufficient to select a reliable candidate for its 

stochastic evolution, one can prefer to replace 


Z  by a fuzzy-stochastic variable. We will suggest 

several alternative models in the following subsections. 

 

3.1 Standard market model  

Due to its overwhelmed usage, we call the model adopted by Black and Scholes in their 

seminal paper (Black and Scholes, 1973) for the evolution of the underlying asset price as the standard 

market model:  

 ,=)( tttZ    (5) 

Here,  is a random term from standard normal distribution and  is constant parameter, the volatility 

of the underlying asset price returns, and  is a mean correcting parameter, see (4).  

 

3.2 Implied volatility approach 

In the standard market model above, at least two assumptions are not fulfilled by real market 

conditions – the returns do not follow Gaussian distribution and the volatility is not constant over time. 

Thus, a common practice is to invert the BS option pricing formula and obtain a so called implied 

volatility for a set of traded maturities and exercise prices. Next, the implied volatility can be used for 

valuation of OTC derivatives. However, it can happen that OTC derivatives are of different parameters 

than those traded at the market. In this case, it can be useful to estimate a function relationship among 

the implied volatility, maturity, moneyness and possibly also payoff function – see eg. Rebonato 

(2004) 
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3.3 Stochastic volatility approach 

Another direction of research is focused on replacing a constant parameter of volatility  by a 

suitable stochastic process. For example, Heston (1993) provided a closed-form formula for option 

pricing problem assuming that variance follows: 

 .)(=)()( 2 tt vdtvvdvtvt   (6) 

Here, 2  is different, and potentially dependent to  in (5), v  describes the long-run average of 

variance,  is its volatility and  allows one to calibrate the velocity of the reversion to v . Obviously, 

we can assume any other process, which will provide us positive values of volatility (variance) and 

will possibly take into account its mean-reverting tendency. In this case, however, it can be inevitable 

to run a Monte Carlo simulation. 

 

3.4 Interval approach 

The stochastic volatility approach requires the ability to formulate a suitable stochastic process 

that is followed by volatility or variance in time, including reliable estimates to its parameters. Quite 

often, however, we cannot be sure how relevant is the information about the past for the future. One 

possibility is to use only the maximal and minimal values we have observed, ie. we use boundaries for 

the volatility evolution:  

 .|)( maxmin   tttZ  (7) 

which provides us an interval for the option price. 

 

4.5 Volatility as a fuzzy parameter 

Notwithstanding, we can make a one step further and define a distinct degree of reliability for 

particular boundaries. Clearly, the resulting option price will not be an interval as in (7), but rather a 

whole set of intervals.  

Let LU  be an LU-fuzzy number (see the next section) defined around the crisp estimation of 

. Then we can model price returns by the following fuzzy-stochastic model:  

 .=)( tttZ LULU    (8) 

Obviously, LU  since is LU-fuzzy number, it is inevitable to define also the mean correcting 

parameter   as the LU-fuzzy number. Next, we can extend (8) so that LU  is not defined around 

deterministic estimation of  but rather around random number from uniform distribution. We will 

provide the foundations of this approach in the next section. 

 

4. Fuzzy number and fuzzy random variable 

 

Let R  denotes the set of real numbers and [0,1]: RA  be a mapping. We say that A  is a 

fuzzy number if A  is normal (ie. there exits an element 0x  such that 1=)( 0xA ), convex (ie. 

))(),((min))(1( yAxAyxA    for any Ryx,  and [0,1] ), upper semicontinuous and 

)(supp A  is bounded, where 0}>)(|{=)(supp xAxclA R  and cl is the closure operator (see 

Dubois and Prade, 1978). Note that the most popular models of fuzzy numbers are the triangular and 

trapezoidal shaped models investigated by Dubois and Prade (1980). Their popularity follows from the 

simple calculus as addition or multiplication of fuzzy numbers which can be established for them. This 

is also a reason why we can find many recent papers on the approximation of fuzzy numbers by the 

aforementioned models (see eg. Ban (2009a,b) and the references therein). In order to model fuzzy 

numbers we will use a more advanced model of fuzzy numbers based on the interpolation of given 

knots using rational splines that was proposed by Guerra and Stefanini (2005) and developed by 

Stefanini et al. (2006). This model generalizes triangular fuzzy numbers and provides a broad variety 

of shapes enabling more precise representation of fuzzy real data. Nevertheless, the calculus remains 

very simple. 
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Recall that a piecewise rational cubic Hermite parametric function ],[ 0

1

nCP  , with 

parameters ii wv , , 1,0,= ni  , is defined for ],[ 1 ii  , 1,0,= ni   by  

 =),,(=)( iii wvPP   

 ,
)(1)(1)(1

))((1)()(1)(1
3223

1

3

11

223







 

ii

iiiiiiiiii

wv

fdhfwdhfvf
 

 where the notations if  and id  are, respectively, the real data values and the first derivative values 

(slopes) at the knots n <<0  , iiih  1= , ii h)/(=    and 0, ii wv . The parameters iv  

and iw  are called the tension parameters. In this work, we will use a global monotonicity setting (cf. 

Stefanini et al., 2006):  

 


















.0,

;,
== 1

1

1

otherwise

ffif
ff

dd

wv ii

ii

ii

ii  (9) 

 A main reason for this assumption is a natural calculus which can be introduced for fuzzy numbers 

based on this type of parametric functions. One can see that each such parametric function 

],[ 0

1

nCP   may be expressed in the matrix form consisting of parameters as follows:  

 

































n

n

dd

ff









0

0

== d

f

P  (10)  

for a partition n <<0   of the interval ],[ 0 naa . 

In what follows, we will identify each parametric function ],[ 0

1

nCP   satisfying the 

presumption on iv  and iw  given in (9) is satisfied, with a matrix P  established above and simply 

write )(=)(  PP . Now we may define a special case of LU-fuzzy numbers introduced in Guerra 

and Stefanini (2006). Note that our definition is slightly different than the original one, but the idea 

remains the same. Recall that an  -cut of a fuzzy number A  is a set })(|{=   xAxA R .  A 

fuzzy number A  is an  LU-fuzzy number, if there exist a partition 1=<<=0 0 na   and 

1)(2  n  matrices 


A  and 


A  (in the form of (10)) such that   

1.  )](),([= 


AAA  for any [0,1] ,  

2.  





ii
ff 

1
 and 






ii
ff 

1
 for any 1,0,= ni  , and 



nn
ff  = ,  

3.  0

i
d  and 0

i
d  for any ni ,0,=  ,  

4.  if 






1
=

ii
ff   (or 







1
=

ii
ff  ), then 







1
=

ii
dd   (or 







1
=

ii
dd  ).  

An LU-fuzzy number will be denoted by ),(= 
AAA  and the set of all LU-fuzzy numbers 

defined over a partition 1=<<=0 0 na   will be denoted by ),,( 0 nLU  F .  

Let 
mD R  and RDg :  be a real function which has all partial derivatives on the 

domain D , ie. R ),,( 1 m
k

x aag   for any Daa m ),,( 1   and mk ,1,=  . A general procedura 

showing how to extend the function g  to a function ),,(:~
0 nLUg  FD , where 

m

nLU ),,( 0  FD  is a suitable domain, can be formulated within the two following steps:
2
   

                                                 
2
Let us stress that a careful choice of the domain D  has to be given to unsure the correctness of the extended 

mapping g~ . 
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1.  Put },{1,= mm , consider },{: m  and define  
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2.  Denote ),(= 

kkk
 BBB  the pair of k-th columns of 


B  and 


B  and define  

 ),(==),,(~
1


BBBAA mg   (12)  

such that, for any nk ,0,=  , we have  
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where min  (and analogously max ) is defined by  

 ).=(=,min dbandcaorcaifonlyandif
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One can simply check that   

1.  ),(=),(),(   BABABBAA ,  

2.  ),(=),( 
AAAA kkk  and ),(=),(   AAAA kkk  for 0k ,  

3.  ])[exp],[exp(=)],[(exp 
AAAA  with  
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where the usual addition of matrices and the usual scalar multiplication are applied.  

In order to define fuzzy random variables over LU-fuzzy numbers we follow the approach 

proposed by Kwakernaak (1978, 1979) and later formalized in a clear way by Kruse and Meyer 

(1987). Since each LU-fuzzy number is uniquely determined by a pair of matrices ),( 
AA , we will 

define fuzzy random variable using random matrices as follows.  Let ),,( PA  be a probability 

spaces. A mapping ),,(: 0 nLUX  F  is said to be a LU-fuzzy random variable (or FRV for 

short), if there exist mappings 
1:,,,   nRDDFF  such that 


Fip , 


Fip  and 


Dip , 


Dip , where ip  denotes i -th projection, are real-valued random variables for any 1,1,= ni   

and  
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  We say that two FRVs X  and Y  are independent (identically distributed), if 


Xip F , 


Xip F , 



Xip D , 


Xip D  and 


Yip F , 


Yip F , 


Yip D , 


Yip D  are independent (identically distributed), 

respectively, for any 1,1,= ni  . On Fig. 1, we can see five pseudo-randomly generated LU-fuzzy 

numbers defined under the normal distribution  

 

Figure 1: Pseudo-random LU-fuzzy numbers 
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Source: Authors’ calculation in Mathematica 8.0; the kernels, ie. the points with the membership 

degree equal to 1, are determined from (0,4)N , further values are determined in such way that the 

difference between 


i
f  and 



1i
f  are random values from (0,2)N , 



i
d  and 


i

d  are determined 

from (0.01,2)U  for 1i  and xdd 10000/== 11

  , where x  is a random value from 

(1,1000)U ). 

 

 

5. Comparative example 

 

Let us assume a call and put option on German stock market index (DAX) on some day in 

February, 2006. For example, as Benko et al. (2007) documented for a two-weeks options, when 

fitting the BS model to market prices (in February 2, 2006) we can sometimes get different implied 

volatilities for the put and call options, especially if the moneyness is far from 1, ie. the option is either 

deep ITM or OTM. Here, we will calculate the fuzzy-value of the option on the basis of implied 

volatility obtained on a given day/month. 

 

5.1 Option pricing model 

Let LU  be an LU-fuzzy-random number defined on the basis of the crisp estimation of  . 

Then we can model price returns by the fuzzy-stochastic model (8) above. In order to evaluate the 

risk-neutral expectation (3) via Monte Carlo simulation, ie. we put (8) into the exponential. Moreover, 

it is important to choose a proper mean-correcting parameter LU  such that the complex process (ie. 

including the riskless rate) will be martingale, when discounted by the riskless rate. Obviously, since 

(8) is an LU-fuzzy random process, parameter LU  has to be defined as LU-fuzzy number, too. Thus, 

we obtain:  

 ].)[(exp=  LULUtT rSS   (16) 

Recall that LU  denotes a mean correcting parameter that compensates  LU . Therefore, in order 

to evaluate the model, we have to apply several operations with fuzzy numbers to obtain TS . Finally, 

assuming a call option the exercise prices is deduced from TS  and after that the positive part of the 

matrix is returned as an option payoff for a given scenario. Obviously, in line with (3) we have to 

evaluate a huge number of such scenarios to obtain a reliable estimate of option price as a mean of 

matrices – we recall that the payoff for each particular scenario must be a positive LU-fuzzy number 

or zero matrix. 

 

5.2 Results 

 

Comparative results for call and put options are provided in Table 1. For simplicity and in 

order to increase the information value, we normalize the spot price to be 1, as well as the exercise 

price, ie. in the table we provide the ATM call and put option prices in percentage of the initial spot 
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value. We keep the data similar to Benko et al. (2007) – riskless rate is 2.5% p.a., time to maturity is 

10 business days, and implied volatility is 15.5% for both, the call and put (all these parameters are 

crisp numbers). The BS price is therefore 1.25 for the call and 1.10 for the put. 

In order to get the option price, we have to basic choices, how to define LU-fuzzy random 

variable: (i) uniform distribution, (ii) normal distribution. In the first case, we spread the implied 

volatility by 50%, in the latter we set its ‘variance’ as 0.1. These parameters are estimated on the basis 

of long-run evolution of implied volatilities, ie. to cover a majority of values observed in the past. 

 

Table 1: Call and put option ‘mean’ LU-fuzzy value 

 Uniform distribution Normal distribution 

Call 
































11349.193.22

25.150.295.4
,

11340.208.21

25.181.00.46  































9089.207.20

1.2516.397.5
,

9084.217.20

25.171.038.0

 
Put 
































11472.208.21

1.1066.129.2
,

11470.203.22

10.135.004.0  































9094.217.20

1.1033.243.3
,

9097.207.20

10.135.006.0  

Source: author’s calculations in Mathematica 8.0. 

 

From the results depicted in Table 1, we can observe that both payoff functions lead to almost 

identical slopes of the resulting fuzzy-value and that the midpoints, ie. -cut at the level 1, is very 

close to the BS price. Obviously, the midpoint is identical for both approaches, uniform and normal, 

though the slopes and left and right nodes can be slightly different. 

Furthermore, we extend the analysis by considering one-year ATM call & put options. In this 

case, however, the market is not sufficiently liquid so that it can be difficult to detect the right interval. 

We therefore provide more extend analysis by considering several degrees of uncertainty – we assume 

only the case when volatility, the FRV, is based on normal distribution with standard deviation rising 

from 0.01 to 0.1 (Figure 2, first column); and FRV based on uniform distribution (Figure 1, second 

column). 

 

5. Conclusion 

 

Volatility is one of the crucial parameters within option valuation problems. It is also the 

parameter, which is probably the most difficult to estimate. It is evident especially in the case of 

options with low liquidity or long maturity. In this paper, we have suggested a fuzzy random process 

to describe the volatility of log-returns underlying the option. Such approach allows us to keep more 

information about the possible option prices. 

In particular, we have studied the case of call/put options on German DAX index, which 

allows us to utilize the implied volatility data. We have shown results that might be obtained when two 

different distributions are considered as a basis for calculation of the volatility intervals – the normal 

and uniform.  

Within the further research on this topic we should concentrate in more details on the selection 

of various types of fuzzy-random numbers and their suitability for volatility modeling of particular 

option types. 
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Figure 1: Call and put options for various degree of fuzziness of volatility 

 
 

 
Source: author’s calculations in Mathematica 8.0. 
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